灰狼

智能优化算法基于灰狼算法求解带约束的

发布时间:2022/5/9 15:49:50   
1简介

Mirjalili等人提出了一种新的群体智能算法———灰狼优化算法(GWO),并通过多个基准测试函数进行测试,从结果上验证了该算法的可行性,通过对比,GWO算法已被证明在算法对函数求解精度和稳定性上要明显优于PSO、DE和GSA算法。

生物在自然界严酷环境下,即使并不具有人类的高智能,但在相同的目标,即食物的激励下,通过不断地适应与集体合作都表现出了令人惊叹的群体智能。文献[6]基于狼群严密的组织系统及其精妙的协作捕猎方式,提出了一种新的群体智能算法———灰狼优化算法。

2部分代码

%GreyWolfOptimizer

function[Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fhandle,fnonlin)

%initializealpha,beta,anddelta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf;%changethisto-infformaximizationproblems

Beta_pos=zeros(1,dim);

Beta_score=inf;%changethisto-infformaximizationproblems

Delta_pos=zeros(1,dim);

Delta_score=inf;%changethisto-infformaximizationproblems

%Initializethepositionsofsearchagents

Positions=initialization(SearchAgents_no,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;%Loopcounter

%Mainloop

whilelMax_iter

fori=1:size(Positions,1)

%Returnbackthesearchagentsthatgobeyondtheboundariesofthesearchspace

Flag4ub=Positions(i,:)ub;

Flag4lb=Positions(i,:)lb;

Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;

%%Calculateobjectivefunctionforeachsearchagent

fitness=Fun(fhandle,fnonlin,Positions(i,:));

%%UpdateAlpha,Beta,andDelta

iffitnessAlpha_score

Alpha_score=fitness;%Updatealpha

Alpha_pos=Positions(i,:);

end

iffitnessAlpha_scorefitnessBeta_score

Beta_score=fitness;%Updatebeta

Beta_pos=Positions(i,:);

end

iffitnessAlpha_scorefitnessBeta_scorefitnessDelta_score

Delta_score=fitness;%Updatedelta

Delta_pos=Positions(i,:);

end

end

a=2-l*((2)/Max_iter);%adecreaseslinearlyfron2to0

%UpdatethePositionofsearchagentsincludingomegas

fori=1:size(Positions,1)

forj=1:size(Positions,2)

r1=rand();%r1isarandomnumberin[0,1]

r2=rand();%r2isarandomnumberin[0,1]

A1=2*a*r1-a;%Equation(3.3)

C1=2*r2;%Equation(3.4)

D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j));%Equation(3.5)-part1

X1=Alpha_pos(j)-A1*D_alpha;%Equation(3.6)-part1

r1=rand();

r2=rand();

A2=2*a*r1-a;%Equation(3.3)

C2=2*r2;%Equation(3.4)

D_beta=abs(C2*Beta_pos(j)-Positions(i,j));%Equation(3.5)-part2

X2=Beta_pos(j)-A2*D_beta;%Equation(3.6)-part2

r1=rand();

r2=rand();

A3=2*a*r1-a;%Equation(3.3)

C3=2*r2;%Equation(3.4)

D_delta=abs(C3*Delta_pos(j)-Positions(i,j));%Equation(3.5)-part3

X3=Delta_pos(j)-A3*D_delta;%Equation(3.5)-part3

Positions(i,j)=(X1+X2+X3)/3;%Equation(3.7)

end

end

l=l+1;

Convergence_curve(l)=Alpha_score;

end

3仿真结果4参考文献

[1]龙文l,赵东泉,徐松金.求解约束优化问是一页的改L井灰狼优化算法.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

天天Matlab



转载请注明:http://www.aideyishus.com/lktp/118.html

------分隔线----------------------------

热点文章

  • 没有热点文章

推荐文章

  • 没有推荐文章